Application of Self-optimization Closed-Loop Input-shaping with Parameter of Chaotic Particle Swarm in Coaxial Drive Printing System

نویسندگان

  • Bo Xu
  • Ligang Cai
  • Jianwu Yang
  • Sen Zhang
چکیده

Based on the issue of torsional vibration, this article analyzes the structure of the drive part of coaxial drive printing system, constructs its mathematic model, and explores the mechanism of generation of torsional vibration of press-that is the coupling of inherent frequency between input signal and machine drive system which leads to torsional vibration. In view of this, it adopts the closed loop input-shaping based on chaotic particle swarm to restrain the torsional vibration. In the algorithm, it firstly finds out the optimal control structure by the transfer function based on the structure of three kinds of closed-loop input-shaping and secondly adopts the approach of chaotic particle swarm optimization to make off-line optimization of parameter of input-shaping. Such kind of approach avoids the prematurity phenomenon existing in traditional particle swarm optimization to some extent. Besides, it enlarges the scope of parameter selection. Finally, it achieves the onetime collection of vibration signal and off-line optimization by the transfer function. This approach can not only avoid system oscillation caused by online optimization but also solve the problem of low precision of pure offline modeling optimization. Meanwhile, it builds multi-mass experimental platforms as well as makes a contrast with site collected signal. The data shows that experimental platform proves the system oscillation caused by low frequency vibration point of the drive system of press. It carries out experimental verification by simulation platform and it proves that chaotic particle swarm optimization has fewer iterations and quick convergence compared with traditional particle swarm optimization in the first place. Secondly, after adding chaotic particle swarm optimization, compared with traditional PID control, the closed-loop input-shaping has simple parameter adjustment and obvious effect of vibration restraint. After adopting ITSE evaluation function to evaluate the inhibitory effect, it is found that the vibration damps by 54.4% compared with the fact without adding input-shaping.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-linear Fractional-Order Chaotic Systems Identification with Approximated Fractional-Order Derivative based on a Hybrid Particle Swarm Optimization-Genetic Algorithm Method

Although many mathematicians have searched on the fractional calculus since many years ago, but its application in engineering, especially in modeling and control, does not have many antecedents. Since there are much freedom in choosing the order of differentiator and integrator in fractional calculus, it is possible to model the physical systems accurately. This paper deals with time-domain id...

متن کامل

Control of Flexible Link Robot using a Closed Loop Input-Shaping Approach

This paper is has addressed the Single Flexible Link Robot. The dynamical model is derived using Euler-Lagrange equation and then a proper controller is designed to suppress a  vibration based-on Input-Shaping (IS) method. But, IS control method is an open loop strategy. Due to the weakness of open loop control systems, a closed loop IS control system is proposed. The achieved closed loop c...

متن کامل

A Collaborative Stochastic Closed-loop Supply Chain Network Design for Tire Industry

Recent papers in the concept of Supply Chain Network Design (SCND) have seen a rapid development in applying the stochastic models to get closer to real-world applications. Regaring the special characteristics of each product, the stracture of SCND varies. In tire industry, the recycling and remanufacturing of scraped tires lead to design a closed-loop supply chain. This paper proposes a two-st...

متن کامل

Suppression of Chaotic Behavior in Duffing-holmes System using Backstepping Controller Optimized by Unified Particle Swarm Optimization Algorithm

The nonlinear behavior analysis and chaos control for Duffing-Holmes chaotic system is discussed in the paper. In order to suppress the irregular chaotic motion, an optimal backstepping controller is designed. The backstepping method consists of parameters with positive values. The improper selection of the parameters leads to inappropriate responses or even may lead to instability of the syste...

متن کامل

Particle Swarm Optimization Based Parameter Identification Applied to a Target Tracker Robot with Flexible Joint

This paper focuses on parameter identification of a target tracker robot possessing flexible joints using particle swarm optimization (PSO) algorithm. Since, belt and pulley mechanisms are known as flexible joints in robotic systems, their elastic behavior affecting a tracker robot is investigated in this work. First, dynamic equations governing the robot behavior are extracted taking into acco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JNW

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014